Solar Cycle Prediction
نویسنده
چکیده
A review of solar cycle prediction methods and their performance is given, including forecasts for cycle 24. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch) of an upcoming solar maximum no later than right after the start of the given cycle. Prediction methods form three main groups. Precursor methods rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. Their implicit assumption is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. Extrapolation methods, in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time and, therefore, it lends itself to analysis and forecasting by time series methods. Finally, instead of an analysis of observational data alone, model based predictions use physically (more or less) consistent dynamo models in their attempts to predict solar activity. In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. Nevertheless, most precursor methods overpredicted cycle 23, while some extrapolation methods may still be worth further study. Model based forecasts have not yet had a chance to prove their skills. One method that has yielded predictions consistently in the right range during the past few solar cycles is that of K. Schatten et al., whose approach is mainly based on the polar field precursor. The incipient cycle 24 will probably mark the end of the Modern Maximum, with the Sun switching to a state of less strong activity. It will therefore be an important testbed for cycle prediction methods and, by inference, for our understanding of the solar dynamo.
منابع مشابه
A synthesis of solar cycle prediction techniques vlJ / N " " ; : / J - ;
A number of techniques currently in use for predicting solar activity on a solar cycle timescale are tested with historical data. Some techniques, e.g., regression and curve fitting, work well as solar activity approaches maximum and provide a month~by-month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but only provide an estimate of t...
متن کاملA synthesis of solar cycle prediction techniques
A number of techniques currently in use for predicting solar activity on a solar cycle timescale are tested with historical data. Some techniques, e.g., regression and curve fitting, work well as solar activity approaches maximum and provide a month-by-month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but only provide an estimate of t...
متن کاملSolar Latitudinal Distribution of Solar Flares around the Sun and Their Association with Forbush Decreases during the Period of 1986 to 2003
Solar flare events of high importance were utilised to study solar latitudinal frequency distribution of the solar flares in northern and southern hemisphere for the solar cycle 22 to recent solar cycle 23. A statistical analysis was performed to obtain their relationship with sudden storm commencement (SSCs) and Forbush decrease events (Fd) of cosmic ray intensity. An 11-year cyclic variation ...
متن کاملOn Predicting the Solar Cycle using Mean-Field Models
We discuss the difficulties of predicting the solar cycle using mean-field models. Here we argue that these difficulties arise owing to the significant modulation of the solar activity cycle, and that this modulation arises owing to either stochastic or deterministic processes. We analyse the implications for predictability in both of these situations by considering two separate solar dynamo mo...
متن کاملDeveloping off-design model of Yazd integrated solar combined cycle for analyzing environmental benefits of using solar energy instead of supplementary firing
An integrated solar combined cycle (ISCC) is analyzed at "off-design" operating conditions. Using the principles of thermodynamics heat and mass transfer a computer code is developed in FORTRAN programming language to simulate the system’s hourly performance under steady state conditions. Three scenarios are considered for the study. In the first one, only the combined cycle (CC) is studied. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2010